

Routes for Nearly Zero Energy

Cardiff

10th March 2015

Milica Kitson Chief Executive Constructing Excellence in Wales

- Ignore the planet, it's the Law!
- UK Legislation: Climate Change Act (2008)
- 80% reduction in Carbon emissions compared to 1990 levels
- Applies across the whole of UK, including construction sector

- Ignore Law, keep the Lights on!
- Oil & Gas peaked in 2010
- Coal peaked before that
- Nuclear peaks in 2020
- Plus mostly imported currently 40% Middle East, 40% Russia

- EU Response: 20-20-20 Policy
- Underpins many decisions
- 20% reduction in CO₂ levels
- 20% reduction in consumption
- 20% increase in renewables
- To be achieved by 2020

- For construction, this is EPBD:
 Environmental Performance of Buildings Directive
- Originally 2002, recast 2010/11
- EU Directives are Directives for Member States to act, not citizens
- For UK, this primarily means we see the change through our Building Regs., and mostly Part L.
- Part L changes so far in 2002, 2006, 2010, 2014...
 ...and probably '16/'17 & '19/'20

- EPBD requires UK to deliver:
- Nearly Zero Energy Buildings (nZEB)
 for public use by December 2018
- Nearly Zero Energy Buildings (nZEB)
 for all by December 2020 (i.e. a little over 2,000 days time)

- So what is Nearly Zero Energy?
- EPBD say the technical method is defined by UK government
- Wales has devolved powers to set standards within UK method
- But, Wales has to achieve the overall EU target of nZEB <u>and</u> the overall EPBD;
 Any Standard as long as its Green!
- Expect nZEB to "feel" like;
 - CfSH 4+
 - BREEAM Excellent+
 - c.19% better than 2014 B Regs
- But subject to the May '15 Election

- **EPBD** talks of "Energy" and in the UK we're used to talking about "Carbon", but similar implications
- EPBD also requires consideration of alternative energy systems when developing schemes
- After achieving nZEB, the EPBD requires that remaining energy demand should be met "to a very significant level" by renewables

- Possible that EPBD, or UK interpretation may try to address the actual performance, not just the designed performance
- So what we actually build, not what we say we've built.

Simplified Cost / Time for "Cost Optimal"

- EPBD says all this must be done in a "Cost Optimal" fashion...
- That's not just Capital Cost; that's lifecycle cost, including:
 - Investment
 - Maintenance
 - Operation
 - Energy (inc. energy sales)
 - Disposal
- Nations that have more than a 15% gap between standards and cost optimal will be challenged
- But that's not all...

Domestic building rate

Non-Domestic building rate

- But isn't the real problem the existing stock?
- EPBD applies to refurbishment,
 so UK Regs will have to as well
- "Major Renovation" is defined as 25% of surface or of value
- Includes technical systems as well as building elements
- Caveated by "technically, functionally and economically feasible" (but you can bet this will be tied to Cost Optimal, not capital price!)

EPBD;

- Nearly Zero Energy
- New & major refurbishment
- Remaining energy low carbon
- Cost Optimal method
- by End of 2020 (or 2018 for public)

"Zero" Carbon

Some way left to go! 2013/'14 2010 2006 2002

- How far have we got so far?
- "Zero Carbon" is not nZEB, but is roughly the goal with "significant renewables" requirement in EPBD
- 2002 improved around 10-15%
- 2006 improved c.25%
- 2010 improved c.25%
- Zero Carbon redefined to exclude unregulated energy
- 2014 improved c.9%

• What next?

- Wales has not yet set Standards to map out nZEB delivery
- Obliged to use SAP/SBEM tools
- Dropped TAN22 requirements, looking to deliver in Regs
- Some current topics that may be considered:
 - Performance Gap
 - Integrated Design

- What is England doing?
- Domestic first (slightly clearer!)
- Intending to deliver
 "Zero Carbon" by 2016
 (although the redefined version)
- Broken into 3 steps:
 - Fabric Energy Efficiency
 - Carbon Compliance
 - Allowable Solutions
- Has EPBD obligations for 2020 that may impact after this, given the "Cost Optimal" clause

- Fabric Energy Efficiency Standard
 FEEs
- Minimum overall performance of building fabric & systems on site;
 - U-Values
 - Thermal bridges
 - Airtightness
 - Heating (& cooling) system(s)
 - Lighting
- Means the energy used to maintain internal comfort per year per m² of building; kWh/m²/annum
- Not to be confused with nZEBs primary energy, which uses the same scientific units

FEEs

- Fabric Energy Efficiency Standard
 FEEs
- Detached or Semi detached
 = c.46 kWh/m²/annum (full)
 - = c.52 kWh/m²/annum (interim 15% relaxation)
- Terraced & Apartments
 - = c.39 kWh/m²/annum (full)
 - = c.43 kWh/m²/annum (interim 15% relaxation)
- Backstops for worst performance of particular elements (Wales pushed these harder in 2014 B. Regs than England has done so far)

Carbon Compliance

- Minimum energy demand of building fabric & systems on site
- Expressed as maximum energy demand per m² of building per year; kg/CO₂/m²/annum
- Being seen as England's interpretation of near Zero Energy Buildings under the EPBD
- All impacted by Election May '15!
 - Tory's 19% over '13
 - Lib Dems possibly 19% too?
 - Labour 52% over '10
 - Greens "zero" new & refurb.
 - UKIP will just abolish it all

- Carbon Compliance
- Currently proposed as...
- Detached
 - = 10 kg/CO $_2$ /m 2 /annum
- Semi or Terraced
 - = 11 kg/CO₂/m²/annum
- Apartments
 - = 14 kg/ $CO_2/m^2/annum$

(And all subject to an election!)

Allowable Solutions

- One-off payment to 'offset' the remaining emissions to "zero" carbon
- Several types proposed:
 - DIY onsite or offsite abatement (including District Heating & local upgrade of other houses off site)
 - Independent carbon abatement contract with third party
 - Pay into a "Carbon Fund"

Allowable Solutions

- Price cap for Carbon Fund likely to be set & reviewed every 3 years
- Cap anywhere between
 £36 / £46 / £60 / £90 per tonne
- Will be applied over a duration;
 30 years currently proposed
- Allowable Solution price = Carbon still 'emitted' from site
 - x m² of property
 - x cost of carbon (£60?)
 - x duration (30 years?)
- Price (& duration) yet to be set –
 big consequences for this!

- How does it work in reality?
- FEEs has a minimum, no (theoretical) maximum but the law of diminishing returns
- Carbon Compliance + FEEs has a minimum but no maximum
- Allowable Solutions will have to make up the rest; no minimum requirement

- Option 1 Staggered
- Deliver FEEs to about
 46 kWh/m²/annum (detached)
- Deliver Carbon Compliance with some on-site renewables to
 10 kg/CO₂/m²/annum (detached)
- Pay your Allowable Solution fee i.e. £1,800

Based on 100m² detached house & "central" carbon cost of £60/tonne over 30 years

- Option 2 Max Renewables
- Deliver FEEs to about
 46 kWh/m²/annum (detached)
- Push well beyond
 Carbon Compliance with some on-site renewables to
 kg/CO₂/m²/annum
- Don't pay any Allowable Solution
 c.£0

- Option 3 Max Fabric
- Push well beyond FEEs to get as close to
 0 kWh/m²/annum as you can
- Don't do any on-site renewables with Carbon Compliance met at 10 kg/CO₂/m²/annum (detached)
- Pay your Allowable Solution fee i.e. £1,800

Based on 100m² detached house & "central" carbon cost of £60/tonne over 30 years

- Option 4 Max Everything!
- Push well beyond FEEs to get as close to
 0 kWh/m²/annum as you can
- Push well beyond
 Carbon Compliance with some on-site renewables to
 kg/CO₂/m²/annum
- Don't pay any Allowable Solution
 c.£0

- What is England doing?
- Non-Domestic
- Significant challenge around the variety of building types
- Some types may have already reached optimal fabric, others have further they can go
- Likely to still be broken into the same three basic steps:
 - Fabric Energy Efficiency
 - Carbon Compliance
 - Allowable Solutions
- More appetite for 'high level' targets that require consultants to calculate compliance

COUNTRY	ENERGY USES INCLUDED	ENERGY PERFOR- MANCE	RENEW- ABLE ENERGY SHARE
Cyprus	Regulated energy	180 kWh/m²/ year	25%
Belgium (Brussels)	Heating, DHW, appliances	45 kWh/m²/ year	-
France	Regulated energy	50 kWh/m²/ year	-
Denmark	Regulated energy	20 kWh/m²/ year	51-56%
Latvia	Regulated energy	95 kWh/m²/ year	-

- What's everyone else doing?
- England = FEEs c.43.6 kWh/m²/annum
- Denmark = 20 kWh/m²/annum (and renewables around 50+%)
- Brussels = 45 kWh/m²/annum
- France = 50 kWh/m²/annum (including unregulated energy too!)
- Latvia = 95kWh/m²/annum (and renewables at 25%)
- Cyprus = 180 kWh/m²/annum (you have to wonder if they'll manage to do this!)

- · Wales has to decide!
- Any questions on EPBD before we show examples from Europe?

Andy Sutton

@AS_Architecture

SuttonA@BRE.co.uk

079 6817 8243

Enhanced fabric performance standards: Lessons from Passivhaus

Content: Part 2

- EU PassREg 'Passive Regions' project, aims and lessons
- What is Passivhaus? Key principles
 - Insulation
 - Thermal bridging
 - Windows
 - Airtightness
 - MVHR
- Beacon projects in Wales
 - Carmarthenshire school
 - Cardiff Council Housing Partnership Programme
- Quality Assurance to close the performance gap
- Passivhaus principles influencing future construction

The PassREg project

14 Partners. 11 Countries. 3 Years. 1 Goal.

Supporting the growth of Passive House regions to implement EU 'near zero energy' goals in buildings from 2020

- PassReg helps aspiring regions succeed by:
 - Investigating successes
 - Making them known and accessible
 - Building up training, quality assurance and certification infrastructure
 - Stimulating the market for suitable products and professionals

Key outputs of PassREg

- New Passive House buildings + RES throughout partner countries as case studies (*Carmarthenshire*, *Cardiff*)
- A 'Success Guide' detailing successes in frontrunner regions
- A 'Set of Solutions' detailing individual solutions and resources
- International and regional events and study tours
- Wider network of 'Passivhaus aware' professionals in the regions

© Passive House Institute

See www.passreg.eu for further information

Renewable sources limited by practical issues

- Renewable Energy Sources have a low energy density (the relative transfer of useful energy from the resource)
- Large areas are generally required (e.g. roof areas for PV, growing areas for biomass, etc)
- What about flats/ apartments?
- Focusing on energy efficiency to reduce demand is helpful to optimise the renewable resource
- For a typical family home built to
 Passivhaus standard, energy demand can often be offset by equivalent roof area of PV (approx.)
 (i.e. net zero energy onsite)

PassREg Frontrunner Regions: already NZEB

Hannover, Germany

Brussels, Belgium

Tyrol, Austria

- Birthplace of PH concept
- Began in the 1980s
- Political consensus present / financial mechanisms in place

- Heart of EU
- Recent political commitment to the PH standard
- Rapid growth in PH new builds and retrofits

- Strong national and regional policies
- Social housing dominated construction market
- Vast improvements over last few years

Drivers: Regulations and incentives

- Initially, introduced incentives/ subsidies based on energy performance (highest subsidy for Passivhaus standard)
- Example funding mechanisms: levy on energy prices to consumers to create national funds for subsidy (like UK FIT)
- Once capacity for delivering Passivhaus increased, Municipal Governments set minimum mandatory regulatory standards as Passivhaus for new construction
- Brussels report that it is now no more expensive to build Passivhaus (never lost skills of wet trades, so airtightness delivered at no extra cost)

Key lessons from use of Passivhaus

- Standard successfully used all over the world (hot and cold climates)
- Used in all different types of building, not just houses (offices, schools, supermarkets, swimming pools...)

Focus on design, detailing and onsite delivery; low/no cost elements

transferrable to any scheme, particularly:

- Thermal bridging
- Airtightness
- Good reputation for meeting intended performance – minimal performance gap – thanks to Quality Assurance activities

http://www.passivhaustagung.de/Kran/Passivhaus_Kranichstein.htm

What is Passivhaus?

- Internationally recognised building standard, originating in Germany
- Tried and tested over 2 decades
- Applicable to a variety of building types and climates
- Maximum comfort with minimal energy use and life cycle costs
- Assessed using the Passivhaus Planning Package (PHPP) calculation tool

Passivhaus buildings use up to 90% less energy than 'typical' buildings

Why 'passive'?

Key construction principles of Passivhaus: Fabric first approach

- Good thermal insulation(U values < 0.15 W/m²K)
- Thermal bridge-free design
- Passivhaus windows(U_i values < 0.85 W/m²K)
- Very good airtightness
- Ventilation with heat recovery

Passivhaus Requirements

Energy (as measured by PHPP)

– Space heating demand: <15 kWh/m²year</p>

– OR, peak heating load: <10 W/m²</p>

– Primary energy: <120 kWh/m²year</p>

Comfort:

– Airtightness <0.6 ac/h @ 50Pa</p>

– Overheating <10% over 25°C</p>

Windows (installed)
 ≤0.8 W/m²K (≤0.85 W/m²K)

Glazing - Double glazed

Human comfort is significantly influenced by differences between surface temperatures

The radiant temperature asymmetry of 5.5 K is too high. A radiator near the window would be required to compensate.

Glazing - Triple glazed

In a Passivhaus the time and location of the heat supply are arbitrary

With Passivhaus windows, the demanding requirements of the international standards for thermal comfort [ISO 7730] are met without a radiator placed under the window.

Windows help deliver 'free' solar energy

 Some think of triple glazed PH windows as 'radiators' as they can provide the majority of heat for a building via solar gains

Low window U value (triple glazing) to help prevent

heat escaping

 Glazing 'g' value optimised to allow solar gains in winter

- Shading to reduce solar gains in summer
- Expensive component of a Passivhaus (but pays for itself over building life)

Installation key to ensuring good performance

How much fresh air is necessary?

A good quality of indoor air can be achieved with a continuous fresh air flow rate of **30m³ per hour for each person.**

Window ventilation is insufficient

...and people don't like to open windows in winter!

Comfort: MVHR

- 'Uncontrolled' air infiltration below 0.6 ac/h
- Fresh air delivered to occupants at 15-30 m³/person.h through mechanical ventilation
- Constant circulation no stagnant air
- Efficient heat recovery (>80%) provides fresh air with minimal heat loss, even in winter
- In summer, open the windows!
- Such low heating demand allows the space heating to be delivered via the ventilation air – no conventional heat distribution system (rads) required

Accepting MVHR

- NHBC stats suggest significant number of new houses are now using MVHR (around a quarter in 2013)
- Concerns over quality of early installations in UK
- Passivhaus requires system to be balanced by a professional, with independent 3rd party check
- Need to get it right to be a trusted solution for the UK
- Need to drive down airtightness to allow MVHR systems to run as efficiently as possible

Airtightness: potential leaks & penetrations

Airtightness test

 Testing the building's air infiltration rate by means of an air pressure test

 Every property tested individusally! (not sample)

 Average of pressurisation and depressurisation

 2+ tests likely rather than just at completion

Airtightness solutions

- Some clever products
 - Tapes
 - Gaskets
- Mostly about detailing, workmanship and improving tolerances

FISEDIC

Note: Thermal bridges are calculated differently for Passivhaus and UK Regs!

- Due to external (PH) vs internal (UK) dimension conventions
- UK Regs U values will underestimate overall heat loss (can be accurate if ψ calcs accurate)
- PH will overestimate heat loss from U values (so conservative approach)
- Need to know wall thicknesses
 and U values to convert between values

Residual heat loss = ψ (UK)

U value

(PH)

Note: Thermal bridges are calculated differently for Passivhaus and UK Regs!

- Due to external (PH) vs internal (UK) dimension conventions
- UK Regs U values will underestimate overall heat loss (can be accurate if ψ calcs accurate)
- PH will overestimate heat loss from U values (so conservative approach)
- Need to know wall thicknesses
 and U values to convert between values

Bridging of the insulation layer – material choice

- Example: Aluminium profile at the plinth

High heat losses!

Distribution Iosses

Heating demand < Heating load (ca.)

15 kWh/m²a 10 W/m²

Heating

Heating demand DHW according to occupancy

12 ... 35 kWh/m²a

Hot water

Typical distribution losses 15 kWh/m²a (non-usable) 5 kWh/m²a (usable)

Conclusion 1: Heat distribution losses will become <u>relatively</u> high.

Conclusion 2: Heat generation and heat distribution concepts must be reconsidered.

Conclusion 3: Pipes and components need a PH-suitable insulation!

All pipes and ducts well insulated

Quality Assurance for MVHR

- PH Certification requires the ventilation system to be balanced by a professional
- Verified by 3rd party for Certificate
- Additional quality assurance

Illustration © PHI

Airtightness test for QA

- Every property tested individusally! (not sample)
- Intermediate tests likely rather than just at completion?

 With these key checks (MVHR, airtightness, thermal bridging detailing verified onsite), evidently much less chance of experiencing a performance gap

Passivhaus pilot: Burry Port Primary School

- Carmarthenshire Council piloting Passivhaus on a new primary school (extension, <1000m²)
- Justified by in-use savings more than compensating for any additional capital cost
- Occupant comfort and internal environment important

- Test local supply chain issues (rural context: work here, work

anywhere?!?)

Intend to implement the principles (at least) on future projects

Key features of the school from initial feasibility

- Large southerly glazed area for winter solar gains (shading for summer)
- Partial two storey arrangement helped to improve surface area: volume ratio
- Very low U values:

Walls: 0.101 W/m²K

Roof: 0.101 W/m²K

Floor: 0.130 W/m²K

- Very low (aiming for zero) thermal bridging
- Airtightness (max) 0.6 ac/h
- Architects (Archetype) will investigate cross flow and night cooling strategies

Cardiff Council Housing Partnership Programme

- Council piloting Passivhaus on a new housing site within their Partnership Programme
- Houses will be for open market sale test the market and price
- Demonstration for potential NZEB direction by 2020 (which will be within the Partnership period!)
- Council prepared to accept reduced land value to facilitate the scheme and effectively cover any extra capital cost
 - (Balance of risk hopefully market sale prices will ultimately cover any increased capital cost)

CARDIFF

AERDYDD

Summary: Benefits

- Ultra-low energy demand building, so low ongoing running costs
 - Should pay for any additional capital in relatively short timeframe
- Generally regarded as giving very realistic energy use forecasts compared to in-use
 - Reliable budgeting
- Healthy environment for building users
 - Fresh air, no draughts, stable comfortable temperatures, natural daylight
- If going for full PH Certification, the required 3rd party checks and verification provide extra quality assurance

Summary: What can we expect in the coming years?

- Strong emphasis on building fabric so less renewables needed for NZEB and Zero Carbon – secure carbon savings long term
- Buildings without conventional heating systems?
 - Triple glazed windows
 - MVHR
- Thorough commissioning & balancing of MVHR
- DHW loads & losses more significant than heating loads
- Very low U values, elimination of thermal bridging, more extensive insulation of pipes & ductwork
- Airtightness testing on every building
 - New products and techniques being used
- More thorough workmanship to deliver these principles

What's best for Wales?

- Option 1 Staggered
- Backstops for FEEs and Carbon Compliance, plus Allowable Solutions
- Option 2 Max renewables
- Backstop for FEEs, maximise onsite Carbon Compliance
- Option 3 Max fabric
- Deliver best possible FEEs, backstop for Carbon Compliance, plus Allowable Solutions
- Option 4 Max everything
- Deliver best possible FEEs, maximise onsite Carbon Compliance, no Allowable Solutions